Eliminating A Source of Measurement Errors in
Benchmarks

Changkun Ou*

September 30, 2020

Abstract

About six months ago, I did a presentation[1] that talks about how
to conduct a reliable benchmark[4] in Go. Recently, I submitted an issue
#41641[2] to the Go project, which is also a subtle issue that you might
need to address in some cases.

Introduction
It is all about the following code snippet:

func BenchmarkAtomic(b *testing.B) {
var v int32
atomic.StoreInt32(&v, 0)
b.Run("with-timer", func(b *testing.B) {

for i := 0; 1 < b.N; i++ {
b.StopTimer ()
// ... do extra stuff ...

b.StartTimer ()
atomic.AddInt32(&v, 1)
}
1))
atomic.StoreInt32(&v, 0)
b.Run("w/o-timer", func(b *testing.B) {
for i := 0; i < b.N; i++ {
atomic.AddInt32(&v, 1)

b
}

On my target machine (CPU Quad-core Intel Core i7-7700 (-MT-MCP-)
speed/max 1341/4200 MHz Kernel 5.4.0-42-generic x86_64), running this
snippet with the following command:

*Email: research@changkun.de

The golang.design Research Introduction

go test -run=none -bench=Atomic -benchtime=1000x -count=20 | \
tee b.txt && benchstat b.txt

The result shows:

name time/op
Atomic/with-timer-8 32.6ns + Th
Atomic/w/o-timer-8 6.60ns + 6%

Is it interesting to you? As you can see, the measurement without introducing
StopTimer/StartTimer is 26ns faster than with the StopTimer/StartTimer
pair. So, how is this happening?

To dig more reason behind it, let’s modify the snippet a little bit:

func BenchmarkAtomic(b *testing.B) {
var v int32
var n = 1000000
for k¥ := 1; k < n; k *= 10 {
b.Run(fmt.Sprintf ("n-%d", k), func(b *testing.B) {
atomic.StoreInt32(&v, 0)
b.Run("with-timer", func(b *testing.B) {
for i := 0; 1 < b.N; i++ {
b.StopTimer ()
b.StartTimer ()
for j := 0; j < k; j++ {
atomic.AddInt32(&v, 1)
}

b
atomic.StoreInt32(&v, 0)
b.Run("w/o-timer", func(b *testing.B) {
for i := 0; 1 < b.N; i++ {
for j := 0; j < k; j++ {
atomic.AddInt32(&v, 1)
}

b
b

}

This time, we use the k to increase the number of atomic operations in the bench
loop, i.e.:
for j := 0; j < k; j++ {
atomic.AddInt32(&v, 1)
}

Thus with higher k, the target code grows more costly. With similar command:

The golang.design Research Initial Investigation Using go tool pprof

go test -run=none -bench=Atomic -benchtime=1000x -count=20 | \
tee b.txt && benchstat b.txt

name time/op

Atomic/n-1/with-timer-8 34.8ns x12%
Atomic/n-1/w/o-timer-8 6.44ns = 1%
Atomic/n-10/with-timer-8 74.3ns + 5%
Atomic/n-10/w/o-timer-8 47 .6ns + 3%
Atomic/n-100/with-timer-8 488ns + 7%
Atomic/n-100/w/o-timer-8 456ns + 2%
Atomic/n-1000/with-timer-8 4.65ps = 3%
Atomic/n-1000/w/o-timer-8 4.63ps +£12%

Atomic/n-10000/with-timer-8 45.4ps = 4%
Atomic/n-10000/w/o-timer-8 43.5ps = 1%
Atomic/n-100000/with-timer-8 444ps + 1%
Atomic/n-100000/w/o-timer-8 432ps = 0%

What’s interesting in the modified benchmark result is by testing target code
with a higher cost, the difference between with-timer and w/o-timer gets much
closer. For instance, in the last pair of output when n=100000, the measured
atomic operation only has (444ps-432ps) /100000 = 0.12 ns difference, which
is pretty much accurate other than when n=1 the error is (34.8ns-6.44ns)/1
= 28.36 ns.

How is this happening? There are two ways to trace the problem down to the
bare bones.

Initial Investigation Using go tool pprof

As a standard procedure, let’s benchmark the code that interrupts the timer
and analysis the result using go tool pprof:

func BenchmarkWithTimer (b *testing.B) {
var v int32
for i := 0; 1 < b.N; i++ {
b.StopTimer ()
b.StartTimer ()
for j := 0; j < *k; j++ {
atomic.AddInt32(&v, 1)
+

}

go test -v -run=none -bench=WithTimer -benchtime=100000x -count=5 \
-cpuprofile cpu.pprof

Sadly, the graph shows a chunk of useless information where most of the costs
shows as runtime.ReadMemStats:

The golang.design Research

Initial Investigation Using go tool pprof

runtime

mosestsck
0ol 1335 (4 63%)

1.33s
A J

untime
newstack
0.03s (0.1%)
of 1.36s (4.73%)

runtime.

meall
ol 4.48s (15.59%)

11338
Y

0.23s 4.258

gopreempl_m
0ol 1,565 (S43%)

" Y
1.56s prry
‘ 0014255 (14.79%)

A |

rustieme
goschedlmpl
af 1,56 (5.43%)

4.258

esting
(*B)

luanch
0 of 4,635 (16.12%)

4.63s

N
0 of 4,635 (16.12%)

4.63s

benchtimer_test
BenchmarkWelhTamer

fucl
0 of 4,635 (16.12%)

/.283 12.345
¥

e Eoss
*B} (*B)
SupTimer SunTmer
0012 288 (7.94%) 0 of 2348 (8 14%)

AN
\2\273 2.33s
4 y
runtime

ReadMemStats
2.725 (9.47%)
of 4.60s (16.01%)

ll.Sls

fustime ‘

stariTheWor
Oof 1815 (6 30%)
0.03s

runtime

mstant
O of 18 285 (61 63%)

12.34s 5.94s
A
alims runlime
syseemsack e
O of 14.20s (49.43%) 001 5945 (20 885%)
10.14s 4s 5.94s
suntime rantiase
sasTheWorld stopTheWorld e
1 funcl .
0 of 10,145 (35.29%) Oof 4s (13.92%) 00l 3,545 (20.88%)

T T

Figure 1: pprof

The golang.design Research Initial Investigation Using go tool pprof

This is because of the StopTimer/StartTimer implementation in the testing
package calls runtime.ReadMemStats:

package testing

...

func (b *B) StartTimer() {
if !'b.timerOn {
runtime.ReadMemStats (&memStats) // <- here
b.startAllocs = memStats.Mallocs
b.startBytes = memStats.TotalAlloc
b.start = time.Now()
b.timerOn = true

func (b *B) StopTimer() {
if b.timerOn {
b.duration += time.Since(b.start)
runtime.ReadMemStats (&memStats) // <- here
b.netAllocs += memStats.Mallocs - b.startAllocs
b.netBytes += memStats.TotalAlloc - b.startBytes
b.timerOn = false

}

As we know that runtime.ReadMemStats stops the world, and each call
to it is very time-consuming. This is an known issue #20875[3] regarding
runtime.ReadMemStats in benchmarking

Since we do not care about memory allocation at the moment, to avoid this
issue, let’s just hacking the source code by just comment out the call to
runtime.ReadMemStats

package testing

...

func (b *B) StartTimer () {
if !b.timerOn {
// runtime.ReadMemStats (émemStats) // <- here
b.startAllocs = memStats.Mallocs
b.startBytes = memStats.TotalAlloc
b.start = time.Now()
b.timerOn = true

The golang.design Research Further Verification Using C+-+

func (b *B) StopTimer() {
if b.timerOn {
b.duration += time.Since(b.start)
// runtime.ReadMemStats (€memStats) // <- here
b.netAllocs += memStats.Mallocs - b.startAllocs
b.netBytes += memStats.TotalAlloc - b.startBytes
b.timerOn = false

}
And re-run the test again, then we have:

Have you noticed where the problem is? Yes, there is a heavy cost in calling
time.Now() in a tight loop (not really surprising because it is a system call).

Further Verification Using C++

As you can see, the Go’s pprof facility has its own problem while doing a bench-
mark, one can only edit the source code of Go to verify the source of the mea-
surement error. Can we do something better than that?

Let’s just write the initial benchmark in C++. This time, we go straightforward
to the issue of now():

#include <iostream>
#include <chrono>

void empty() {}

int main() {
int n = 1000000;
for (int j = 0; j < 10; j++) {
std::chrono: :nanoseconds since(0);
for (int i = 0; 1 < n; i++) {
auto start = std::chrono::steady_clock::now();
empty () ;
since += std::chrono::steady_clock::now() - start;

}

std::cout << "avg since: " << since.count() / n << "ns \n";
}
compile it with:
clang++ -std=c++17 -03 -pedantic -Wall main.cpp

In this code snippet, we are trying to measure the performance of an empty
function. So, ideally, the output should be Ons. However, there is still a cost in

The golang.design Research Further Verification Using C+-+

testing
(*B)

launch
0 of S0ms (83.33%)

(*B)

runN
0 of 50ms (83.33%)

50ms

benchtimer_test
BenchmarkWith Timer
0 of 50ms (83.33%)

‘Ans 30ms
y

testing testing
(*B) (*B)
StartTimer StopTimer
0 of 20ms (33.33%) 0 of 30ms (50.00%)
20ms 30ms
y
time
Now
0 of 20ms (33.33%)

y
time
20ms Since
0 of 30ms (50.00%)
4
time
now 30ms
0 of 20ms (33.33%)
10ms 10ms
(inline) (inline)
runtime runtime
walltime nanotime
0 of 10ms (16.67%) 0 of 40ms (66 67%)
10ms 40ms
-
. runtime
runtim -
e nanotimel

walltime1
10ms (16.67%) | | 20ms (33.33%)
of 40ms (66 67%)

Figure 2: pprof

The golang.design Research Further Verification Using C+-+

calling the empty function:

avg since: 17ns
avg since: 16ns
avg since: 16ns
avg since: 16ns
avg since: 16ns
avg since: 16ns
avg since: 16ns
avg since: 16ns
avg since: 16ns
avg since: 16ns

Furthermore, we could just simplify the code to the subtraction of two now()
calls:

#include <iostream>
#include <chrono>

int main() {
int n = 1000000;
for (int j = 0; j < 10; j++) {
std: :chrono: :nanoseconds since(0);
for (int i = 0; 1 < n; i++) {
since -= std::chrono::steady_clock::now() -
std: :chrono: :steady_clock: :now() ;

}

std::cout << "avg since: " << since.count() / n << "ns \n";

}

and you could see that the output remains end in the cost of avg since: 16mns.
This proves that there is an overhead of calling now() for benchmark-
ing. Thus, in terms of benchmarking, the actual measured time of a target code
equals to the execution time of target code plus the overhead of calling now():

time.Now()
target()
time.Now()
I

Actual Measurement

Assume the target code consumes in T ns, and the overhead of now() is t ns.
Now, let’s run the target code N times. The total measured time is T*N+t, then
the average of a single iteration of the target code is T+t/N. Thus, the systematic
measurement error becomes: t/N. Therefore with a higher N, you can get rid of
the systematic error.

The golang.design Research The Solution

The Solution

So, back to the original question, how can I get address the measurement error?
A quick and dirty solution is just subtract the overhead of calling now():

#include <iostream>
#include <chrono>

void target() {}

int main() {
int n = 1000000;
for (int j = 0; j < 10; j++) {
std::chrono: :nanoseconds since(0) ;
for (int 1 = 0; i < n; i++) {
auto start = std::chrono::steady_clock: :now();
target) ;
since += std::chrono::steady_clock::now() - start;

+
auto overhead = -(std::chrono::steady_clock::now() -
std: :chromno: :steady_clock: :now()) ;
since —-= overhead * n;
std::cout << "avg since: " << since.count() / n << "ns \n";

}
And in Go, you could do:

var v int32
atomic.StoreInt32(&v, 0)
r := testing.Benchmark(func(b *testing.B) {

for i := 0; i < b.N; i++ {
b.StopTimer ()
// ... do extra stuff ...

b.StartTimer ()
atomic.AddInt32(&v, 1)

}
1)
// do calibration that removes the overhead of calling time.Now().
calibrate := func(d time.Duration, n int) time.Duration {
since := time.Duration(0)
for i := 0; i < n; i++ {
start := time.Now()

since += time.Since(start)

The golang.design Research REFERENCES

}
return (d - since) / time.Duration(n)

}

fmt.Printf ("%v ns/op\n", calibrate(r.T, r.N))

As a take-away message, if you would like to write a micro-benchmark (whose
runs in nanoseconds), and you have to interrupt the timer to clean up and
reset some resources for some reason, then you must do a calibration on the
measurement. If the Go’s benchmark facility plans to fix #41641[2], then it is
great; but if they don’t, at least you are aware of this issue and know how to
fix it now.

References

[1] Changkun Ou. 2020. Conduct Reliable Benchmarking in Go. TalkGo
Meetup. Virtual Event. March 26. https://golang.design/s/gobench

[2] Changkun Ou. 2020. testing: inconsistent benchmark measurements when
interrupts timer. The Go Project Issue Tracker. Sep 26. https://go.dev/iss
ue/41641

[3] Josh Bleecher Snyder. 2020. testing: consider calling ReadMemStats less
during benchmarking. The Go Project Issue Tracker. Jul 1. https://go.dev
/issue /20875

[4] Beyer, D., Lowe, S. & Wendler, P. 2019. Reliable benchmarking: require-
ments and solutions. International Journal on Software Tools for Technol-
ogy Transfer. Issue 21. https://doi.org/10.1007/s10009-017-0469-y

10

https://golang.design/s/gobench
https://go.dev/issue/41641
https://go.dev/issue/41641
https://go.dev/issue/20875
https://go.dev/issue/20875
https://doi.org/10.1007/s10009-017-0469-y

	Introduction
	Initial Investigation Using go tool pprof
	Further Verification Using C++
	The Solution

