(Generic) Functional Options Pattern

Changkun Ou*
April 11, 2022

Abstract

The widely used self-referential function pattern as options, originally
proposed by Rob Pike[1], allows us to design a flexible set of APIs to
help arbitrary configurations and initialization of a struct. However, when
such a pattern is cumbersome when we use one option to support multiple
types. This article investigates how the latest Go generics design could
empower a refreshed “generic” functional options pattern and show what
improvements in the future version of Go could better support such a
pattern.

The Functional Options Pattern

In the dotGo 2014, Dave Cheney|[2] well explained the motivation and the use
of self-referential functional options pattern in addition to the original thoughts
from Rob Pike. Let’s recall the key idea briefly.

Assume we have a struct A and it internally holds two user-customizable fields
v, v2:

type A struct {
vl int
v2 int

}

Typically, we could make v1 and v2 to be public fields, and let users of this
struct edit them directly, but this may create difficult compatibility issues to
deprecate a field without breaking anything. Another side effect of having public
fields is we cannot guarantee the concurrent safty from the user level: there is
no way to prevent people from directly editing the public fields.

Instead, we could define a type Option to a self referential function func(*A):
type Option func(*A)

Then, in order to change the private fields v1 and v2, two functions V1 and V2
that returns an Option can be written as follows:

*Email: research@changkun.de


https://www.dotgo.eu/

The golang.design Research The Functional Options Pattern

func V1i(vl int) Option {
return func(a *A) {
a.vl = vi

}

func V2(v2 int) Option {
return func(a *A) {
a.v2 = v2

}
}

With these functions, the initial settings of an A object could be created by a
NewA function that consumes arbitrary number of options:

func NewA(opts ...Option) *A {

a := &A{}
for _, opt := range opts {
opt (a)

}

return a
}
For example, the following four different usages both work:
fmt.Printf ("%#v\n", NewA()) // EA{v1:0, v2:0}
fmt.Printf ("%#v\n", NewA(V1(42))) // EA{vl:42, v2:0F}
fmt.Printf (")#v\n", NewA(V2(42))) // EA{v1:0, v2:0}

fmt.Printf ("/#v\n", NewA(V1(42), V2(42))) // &i{vi:/2, v2:0}

This is also super easy to deprecate an option, because we can simply let an
existing option function not effecting anymore. For instance:

type A struct {

vl int
- v2 int
+ // Removed, now moved to v3.
+ // v2 int
v3 int
}

type Option func(*A)

func V1(vl int) Option {
return func(a *A) {
a.vl = vl

}



The golang.design Research The Problem at Scale

+// Deprecated: Use V3 instead.

func V2(v2 int) Option {
return func(a *A) {

- a.v2 = v2

+ // no effects anymore
+ // a.v2 = v2
}
}
+func V3(v3 int) Option {
+ return func(a *A) {
+ a.v3 = v3
+ }
+}

The previous code that uses V2 will have a smooth transition without any
breaks.

The Problem at Scale

Such a functional option pattern scales very ugly when we have tons of options
and multiple types in the same package that need customization.

Let’s explain in more depth with another example. When types A and B sharing
similar fields and both need options to customize:

type A struct {

vl int

}

type B struct {
vl int
v2 int

}

We will have to define two types of options separately for A and B. There is no
easy way to write a unified functional option that both works for A and B, and
for the same field v1, we need two versions of options ViForA and V1ForB to
manipulate:

type OptionA func(a *A)
type OptionB func(a *B)

func ViForA(vl int) OptionA {
return func(a *A) {
a.vl = vi

}



The golang.design Research

The Problem at Scale

func V1iForB(vl int) OptionB {
return func(b *B) {
b.vl = vl
}

func V2ForB(v2 int) OptionB {
return func(b *B) {
b.v2 = v2
}
}

func NewA(opts ...OptionA) *A {
a := &A{}

for _, opt := range opts {
opt (a)
}

return a

func NewB(opts ...OptionB) *B {
b := &B{}

for _, opt := range opts {
opt (b)

}

return b

}

In this way, whenever we need create a new A or B, we could:

fmt
fmt
fmt
fmt
fmt
fmt

Printf ("/#v\n",
Printf ("%#v\n",
Printf ("%#v\n",
Printf ("Y%#v\n",
.Printf ("%#v\n",
Printf ("/#v\n",

NewA())
NewA (V1ForA(42)))
NewB())
NewB (V1ForB(42)))
NewB (V2ForB(42)))

// E€A{v1:0}
// EA{v1:42}
// E€B{v1:0, v2:0}
// EB{vl:42, v2:0}
// EB{v1:0, v2:42}

NewB (V1ForB(42), V2ForB(42))) // &B{v1:/2, v2:42}

Although the above workaround is possible, but the actual naming and usage
really feels cambersum, especially when these options are in a separate package
where we have to supply the package name when dot import is not used (assume
the package name is called pkgname):

fmt .Println(pkgname.NewA())

fmt.Println(pkgname.NewA (pkgname.V1iForA(42)))

fmt.Println(pkgname.NewB())



The golang.design Research Using Interfaces

fmt .Println(pkgname.NewB (pkgname.V1ForB(42)))
fmt.Println(pkgname.NewB (pkgname.V2ForB(42)))
fmt.Println(pkgname.NewB (pkgname.V1iForB(42), pkgname.V2ForB(42)))

Can we do something better?

Using Interfaces

A quick solution to deal with this is to use an interface where an interface that
commonly represents A and B:

type A struct {

vl int

}

type B struct {
vl int
v2 int

}

type Common interface {
JE o ox/
+

Then we can write options as follows using a Common interface, and type switches:
type Option func(c Common)
func V1i(vl int) Option {

return func(c Common) {
switch x := c.(type) {

case *A:

x.vl = vl
case *B:

x.vl = vl
default:

panic("unexpected use")

¥

func V2(v2 int) Option {
return func(c Common) {
switch x := c.(type) {
case *B:
xX.v2 = v2
default:
panic("unexpected use")



The golang.design Research Using Interfaces

}

func NewA(opts ...Option) *A {
a = &A{}

for _, opt := range opts {
opt(a)

}

return a

}

func NewB(opts ...Option) *B {
b := &B{}

for _, opt := range opts {
opt (b)

}

return b

}

Without further changes, one can use V1 both for A and B, which is a quite
simplification from the previous use already:

fmt . Printf ("%#v\n", NewA()) // EA{v1:0}
fmt.Printf (")#v\n", NewA(V1(42))) /7 EA{vl: 42}
fmt.Printf ("%#v\n", NewB()) // €B{v1:0, v2:0}
fmt . Printf ("%#v\n", NewB(V1(42))) // €B{vl:42, v2:0}
fmt.Printf ("%#v\n", NewB(V2(42))) // EB{vl:0, v2:42}

fmt.Printf ("%#v\n", NewB(V1(42), V2(42))) // &B{vil:42, v2:42}

However, not everything goes as expected. There is a heavy cost for this type
of functional options pattern: safety.

Let’s imagine when we accidentally use V2 in NewA, what will happen?
fmt.Println(NewA(V2(42)))

panic: unexpected use

goroutine 1 [running]:

main.main.func6({0x104£38a207, 0x140001221107})

Clearly, code like this will result in a panic at runtime, because there is no
safety mechanism to prevent not using V2 in NewA. Furthermore, from the caller’s
perspective, unless we further look into the implementation of V2, there is no
way we could tell whether we can use V2 in NewA or not.



The golang.design Research Using Generics (and Make Call Safer)

Using Generics (and Make Call Safer)

With the Go 1.18’s generics, we could consider using a generic version of options
to simplify the previously mentioned available options further and guarantee the
safety of calls.

Let’s now consider the same types A and B:

type A struct {

vl int

}

type B struct {
vl int
v2 int

}

Then, instead of defining a direct functional option or using a common interface,
we define a generic option Option[T] that accepts A or B as its type parameters.
In this case, the self-referred function is also a parameterized function func (*T):

type Option[T A | B] func(x*T)

We can carefully constrain the type parameters of the option functions V1 and
V2. Specifically, In the option function V1, is designed to use for either type A
or B, therefore constraining its type parameter T also limits the possible return
types of V1 to be either Option[A] or Option[B]; in the option function V2, we
only intended to let it is used in type B. Hence we could permit B as its type
parameter, and therefore the compiler will only instantiate the version of V2
that returns Option[B].

func V1[T A | Bl (vl int) Option[T] {
return func(a *T) {
switch x := any(a). (type) {

case *A:

x.vl = vl
case *B:

x.vl = vl
default:

panic("unexpected use")

}

func V2[T B] (v2 int) Option[T] {
return func(a *T) {
switch x := any(a). (type) {
case *B:
x.v2 = v2



The golang.design Research Using Generics (and Make Call Safer)

default:
panic("unexpected use")

}

}

Furthermore, in the constructor of A and B. We only permit their dedicated
options, such as NewA only permits type A and NewB only allow type B as their
type parameters:

func NewA[T A] (opts ...Option[T]) *T {

t := new(T)
for _, opt := range opts {
opt (t)
}
return t
}
func NewB[T B] (opts ...Option[T]) *T {
t := new(T)
for _, opt := range opts {
opt (t)
}
return t
+
On the call side, we have:
fmt.Printf ("%#v\n", NewA()) // Emain.A{v1:0}
fmt . Printf ("/#v\n", NewA(V1[A](42))) // Emain. A{vl: 42}
fmt . Printf ("%#v\n", NewB()) // €main.B{vl:0, v2:0}
fmt.Printf ("%#v\n", NewB(V1[B] (42))) // Emain.B{vl:42, v2:0}
fmt . Printf ("%#v\n", NewB(V2[B] (42))) // €main.B{vl:0, v2:42}

fmt.Printf ("%#v\n", NewB(V1[B] (42), V2[B](42))) // &mnain.B{vl:42, v2:42}

With this design, the user of these APIs is safe because it is guaranteed by the
compiler at compile-time, to disallow its misuse by the following errors:

// ERROR: B does mot implement A

_ = NewA(V2[B] (42))

// ERROR: A does not timplement B

_ = NewA(V2[A] (42))

// ERROR: type Option[B] of V2[B](42) does mot match
// inferred type Option[A] for Option[T]

_ = NewB(V1[A] (42), V2[B](42))

// ERROR: type Option[A] of V2[A](42) does not match
// inferred type Option[B] for Option[T]

_ = NewB(V1[B] (42), V2[A](42))



The golang.design Research Conclusion

Conclusion

This article discussed how generics could empower a future version of functional
option pattern to make such a pattern more compact and safer to use. However,
there is one thing left that we could not optimize yet, which is the compiler type
inference for the readability and simplicity.

In the last generics functional option design, we have calls similar to:

NewA (V1[A] (42)))
NewB (V1([B] (42), V2I[B] (42))

This could become a little bit stutter when these functions and options are from
a different package, say pkgname. In this case, we will have to write:

pkgname . NewA (pkgname . V1 [pkgname . A] (42)))
One may wonder: can’t we avoid writing the type parameters of V1 and V27

Indeed, there is only one possibility for V1 to satisfy the NewA’s type constraints
because NewA only accepts type A as type parameters. If V1 is used as the
argument of NewA, then V1 must return Option[A], and therefore the type
parameter of V1 must be A; similar to V2.

With this observation, we could simplify our code from:

pkgname . NewA (pkgname . V1 [pkgname . A] (42))
pkgname . NewB (pkgname . V1 [pkgname .B] (42) , pkgname.V2[pkgname.B] (42))

to

pkgname . NewA (pkgname . V1 (42))
pkgname . NewB (pkgname . V1(42) , pkgname.V2(42))

With this simplification, on the caller side, we see a sort of magic function V1
as an option, which can be used both for NewA and NewB. Unfortunately, with
the current Go 1.18 generics implementation, this type of inference is not yet
supported.

We have created an issue[3] for the Go team and see if this type of optimization
could be possible without introducing any other flaws. Let’s looking forward to
it!

References

[1] Rob Pike. Self-referential functions and the design of options. Jan 24, 2014.
https://commandcenter.blogspot.com /2014 /01 /self-referential-functions-
and-design.html

[2] Dave Cheney. Functional options for friendly APIs. Oct 17, 2014. https:
//dave.cheney.net/2014/10/17 /functional-options-for-friendly-apis


https://commandcenter.blogspot.com/2014/01/self-referential-functions-and-design.html
https://commandcenter.blogspot.com/2014/01/self-referential-functions-and-design.html
https://dave.cheney.net/2014/10/17/functional-options-for-friendly-apis
https://dave.cheney.net/2014/10/17/functional-options-for-friendly-apis

The golang.design Research REFERENCES

[3] Changkun Ou. 2022. cmd/compile: infer argument types when a type set
only represents its core type. The Go Project Issue Tracker. April 11. https:
//go.dev /issue/52272

10


https://go.dev/issue/52272
https://go.dev/issue/52272

	The Functional Options Pattern
	The Problem at Scale
	Using Interfaces
	Using Generics (and Make Call Safer)
	Conclusion

