
The Ultimate Channel Abstraction

Changkun Ou∗

August 09, 2021

Abstract

Recently, I have been rethinking the programming patterns regarding
graphics applications, and already wrote a 3D graphics package in Go,
called polyred. While I was designing the rendering pipeline APIs, a tricky
deadlock struggled with me for a while and led to creating an unbounded
channel as a workaround solution eventually.

The problem
At the beginning of my design, I had to deal with OpenGL where a chunk of
APIs must be executed on the main thread and issue a draw call is one of those
infamous. The common pattern in graphics programming is as follows:

app := newApp()
driver := initDriver()
ctx := driver.Context()

for !app.IsClosed() {
ctx.Clear()
processingDrawCalls(ctx)
processingInputEvents()

}

The entire GUI application is executed in an infinite loop that contains two
parts: draw call processing and event processing.

Typically, all these codes run on the CPU, and the actual rendering computation
executes on a GPU. That means, the graphics API provided by a graphic driver
(such as OpenGL, Vulkan, Metal, Direct X) is just a communication command
send from the CPU to the GPU or even waiting for a response from the GPU.
For some special reasons, the polyred is limited to software implementation, a
pure-CPU implementation. Hence, the execution should utilize the full power
of CPU parallelization. It makes much more sense to execute rendering on a
separate goroutine so that it won’t block the event processing thread.

∗Email: research@changkun.de

1

https://poly.red
https://github.com/go-gl/gl
https://poly.red


The golang.design Research The problem

*Aside: To guarantee an application’s responsiveness, it is ideal not to block the
event processing since there might also be system invocation.

Subsequently, I turned the rendering loop into a separate goroutine and sent
the rendering result to the event processing loop to be flushed to the hardware
display. The entire application works as the following code snippet:

// WARNING: This example contains a deadlock.
package main

import (
"fmt"
"math/rand"
"time"

)

type ResizeEvent struct {
width, height int

}

type RenderProfile struct {
id int
width int
height int

}

// Draw executes a draw call by the given render profile
func (p *RenderProfile) Draw() interface{} {

return fmt.Sprintf("draw-%d-%dx%d", p.id, p.width, p.height)
}

func main() {
// draw is a channel for receiving finished draw calls.
draw := make(chan interface{})
// change is a channel to receive notification of the change
// of rendering settings.
change := make(chan ResizeEvent)

// Rendering Thread
//
// Sending draw calls to the event thread in order to draw
// pictures. The thread sends darw calls to the draw channel,
// using the same rendering setting id. If there is a change
// of rendering setting, the event thread notifies the rendering
// setting change, and here increases the rendering setting id.
go func() {

p := &RenderProfile{id: 0, width: 800, height: 500}

2



The golang.design Research The problem

for {
select {
case size := <-change:

// Modify rendering profile.
p.id++
p.width = size.width
p.height = size.height

default:
draw <- p.Draw()

}
}

}()

// Event Thread
//
// Process events every 100 ms. Otherwise, process drawcall
// request upon-avaliable.
event := time.NewTicker(100 * time.Millisecond)
for {

select {
case id := <-draw:

println(id)
case <-event.C:

// Notify the rendering thread there is a change
// regarding rendering settings. We simulate a
// random size at every event processing loop.
change <- ResizeEvent{

width: int(rand.Float64() * 100),
height: int(rand.Float64() * 100),

}
}

}
}

As one can observe from the above example, it simulates a resize event of a
GUI window at every event processing loop. Whenever the size of the GUI
window is changed, the underlying rendering should adapt to that, for instance,
reallocating the rendering buffers. To allow the rendering thread to understand
the change, another channel is used to communicate from the event thread to
the rendering thread.

It sounds like a perfect design, but a nasty deadlock is hidden in the dark if one
executes the program, and the program will freeze until a manual interruption:

draw-0-800x500
...
draw-0-800x500

3



The golang.design Research Solution 1: Send in select’s case

draw-1-60x94
...
draw-1-60x94
^Csignal: interrupt

If we take a closer look into the program pattern:

1. Two infinite select loops (say E and R) running on different goroutines
(threads).

2. The E thread receives communication from the R thread
3. The R thread receives communication from the E thread

Did you find the problem? The problem happens in the two-way communication:
If the communication channels are unbuffered channel (wait until the receive is
complete), the deadlock happens when E is waiting for R to complete the receive,
and R is also waiting for E to complete the receive.

One may argue that the deadlock can be resolved using a buffered channel:

-draw := make(chan interface{})
+draw := make(chan interface{}, 100)
-change := make(chan ResizeEvent)
+change := make(chan ResizeEvent, 100)

But unfortunately, it remains problematic. Let’s do a thought experiment: if E
is too busy, and quickly exploits the entire buffer of the communication channel
change, then the communication channel falls back to an unbuffered channel.
Then E starts to wait to proceed; On the otherwise, R is busy working on the
draw call, when it is finished, R tries to send the draw call to E. However, at this
moment. the E is already waiting for R to receive the change signal. Hence, we
will fall back to the same case – deadlock.

Is the problem a producer-consumer scenario? Indeed, the case is quite similar
but not entirely identical. The producer-consumer scenario focuses on producing
content for the buffer while the consumer consumes the buffer. If the buffer is
full, it is easy to send either producer or consumer to sleep. However, the key
difference here is: On the two sides of communication, they both play the role
of producer and consumer simultaneously, and they both relying on each other.

What can we do to solve the above deadlock? Let’s reveal two approaches in
this article.

Solution 1: Send in select’s case
The first approach is a simple one. We utilize the power of the select statement:
a send operation to any channel won’t block, if there is a default statement.
Hence, we could simply turn the draw call sends statement into a nested select
statement:

4



The golang.design Research Solution 2: Unbounded Channel

go func() {
p := &renderProfile{id: 0, width: 800, height: 500}
for {

select {
case size := <-change:

// Modify rendering profile.
p.id++
p.width = size.width
p.height = size.height

default:
- draw <- p.Draw()
+ select {
+ case draw <- p.Draw():
+ default:
+ }

}
}

}()

In this case, if the draw <- p.Draw() is blocking, the newly introduced select
statement will not block on the send and execute the default statement then
resolves the deadlock.

However, there are two drawbacks to this approach:

1. If a draw call is skipped, there will be one frame loss of rendering. Because
the next loop will start to calculate a new frame.

2. The event thread remains blocked until a frame rendering in the rendering
thread is complete. Because the new select statement can only be executed
after all rendering calculation is complete.

These two drawbacks are there intrinsically, and with this approach, it seems
there is no better way to improve it. What else could we do?

Solution 2: Unbounded Channel
We may first come up with this idea: Can we make a channel that contains a
buffer with infinite capacity, i.e. unbounded channel? Though the language, it
is not possible yet. However, such a pattern can be easily constructed:

// MakeChan returns a sender and a receiver of a buffered channel
// with infinite capacity.
//
// Warning: this implementation can be easily misuse,
// see discussion below
func MakeChan() (chan<- interface{}, <-chan interface{}) {

in, out := make(chan interface{}), make(chan interface{})

5



The golang.design Research Solution 2: Unbounded Channel

go func() {
var q []interface{}
for {

e, ok := <-in
if !ok {

close(out)
return

}
q = append(q, e)
for len(q) > 0 {

select {
case out <- q[0]:

q = q[1:]
case e, ok := <-in:

if ok {
q = append(q, e)
break

}
for _, e := range q {

out <- e
}
close(out)
return

}
}

}
}()
return in, out

}

In the above implementation, we created two unbuffered channels. To not block
the communication, a separate goroutine is created from the call. Whenever
there is a send operation, it appends to a buffer q. To send the value to the
receiver, a nested select loop that checks whether send is possible or not. If not,
it keeps appending the data to the queue q.

When the input channel is closed, an additional loop over the queue q is used
to run out all cached elements, then close the output channel.

Hence, another fix of the deadlock using an unbounded channel would be:

func main() {
- draw := make(chan interface{})
+ drawIn, drawOut := MakeChan()

...

// Rendering Thread

6



The golang.design Research A Generic Channel Abstraction

go func() {
...
for {

select {
case size := <-change:

...
default:

- draw <- p.Draw()
+ drawIn <- p.Draw()

}
}

}()

// Event Thread
event := time.NewTicker(100 * time.Millisecond)
for {

select {
- case id := <-draw:
+ case id := <-drawOut:

println(id)
case <-event.C:

...
}

}
}

This unbounded channel is very similar to the commonly used standard graphics
API pattern: CommandBuffer, a buffer that caches a series of draw calls, and
does batch execution of a chunk of draw calls.

A Generic Channel Abstraction
We have discussed a form of deadlock in the select statement and two possible
ways to address it. In the second approach, we discussed a possible way of imple-
menting an unbounded channel construction. The implementation constructs
an interface{} typed channel.

We may ask ourselves, does unbounded make sense to have in the Go language
with this particular example? Does the Go team ever consider such usage?

The answer to the second question is: Yes. They do, see golang/go#20352 [2].
The discussion thread shows that unbounded channels indeed serve a certain
application, but clear drawbacks may hurt the application. The major drawback
is that an unbounded channel may run out of memory (OOM). If there is a
concurrency bug, the running application will keep eats memory from OS and
eventually leads to OOM. Developers argue that an unbounded channel should
be added to the language mainly because the MakeChan function is returning an

7



The golang.design Research A Generic Channel Abstraction

interface{} typed channel which brings a weakly typed flaw into the statically
typed Go code. Eventually, Ian Lance Taylor from the Go team clarifies that
an unbounded channel may have a sort of usage but is unworthy to be added to
the language. As long as we have generics, a type-safe unbounded channel can
be easily implemented in a library, answering the first question. As of Go 1.18,
soon we have type parameters[1], the above difficulty finally can be resolved.

Here I provide a generic channel abstraction that is able to construct a type-safe,
arbitrary sized channel:

// MakeChan is a generic implementation that returns a sender and a
// receiver of an arbitrarily sized channel of an arbitrary type.
//
// If the given size is positive, the returned channel is a regular
// fix-sized buffered channel.
// If the given size is zero, the returned channel is an unbuffered
// channel.
// If the given size is -1, the returned an unbounded channel
// contains an internal buffer with infinite capacity.
//
// Warning: this implementation can be easily misuse,
// see discussion below
func MakeChan[T any](size int) (chan<- T, <-chan T) {

switch {
case size == 0:

ch := make(chan T)
return ch, ch

case size > 0:
ch := make(chan T, size)
return ch, ch

case size != -1:
panic("unbounded buffer size should be specified using -1")

default:
// size == -1

}

in, out := make(chan T), make(chan T)

go func() {
var q []T
for {

e, ok := <-in
if !ok {

close(out)
return

}
q = append(q, e)

8

https://golang.org/issue/20352#issuecomment-365438524


The golang.design Research Design Concerns and Real-world Use Cases

for len(q) > 0 {
select {
case out <- q[0]:

q = q[1:]
case e, ok := <-in:

if ok {
q = append(q, e)
break

}
for _, e := range q {

out <- e
}
close(out)
return

}
}

}
}()
return in, out

}

func main() {
in, out := MakeChan[int](1)
// Or:
// in, out := MakeChan[int](0)
// in, out := MakeChan[int](-1)

go func() { in <- 42 }()
println(<-out)

}

*This code is executable on go2go playground: https://go.dev/play/p/krLWm7ZInnL

Design Concerns and Real-world Use Cases
Lastly, we have to address several potential misuses in the current implementa-
tion. The previously demonstrated MakeChan indeed can return two channels,
one as input and the other as output. However, from the caller side, it is not
super clear about whether to write:

in, out := MakeChan[int](-1)

or:

out, in := MakeChan[int](-1)

Moreover, the internal buffer and goroutine may be leaked. Because
this can happen if one closes the input channel, but forget to drain

9



The golang.design Research Design Concerns and Real-world Use Cases

out the output buffer. This means, there are several concerns we have to
address:

1. When the unbounded channel is closed, the internal goroutine for caching
events must return, so that the internal output channel won’t block on
send operation forever so that a goroutine may leak;

2. When the unbounded channel is closed, all elements can still be safely
received from the output channel;

3. To avoid misuse of close(), a runtime panic should be triggered when
accidentally closing the input channel.

As always, we addressed all these issues and further made a generic abstraction
avaliable as a package to use, and we call it chann.

The API design wraps the above mentioned MakeChan function and the imple-
mentation also addresses the mentioned concerns to avoid potential misuses:

// Package chann provides a unified representation of buffered,
// unbuffered, and unbounded channels in Go.
//
// The package is compatible with existing buffered and unbuffered
// channels. For example, in Go, to create a buffered or unbuffered
// channel, one uses built-in function `make` to create a channel:
//
// ch := make(chan int) // unbuffered channel
// ch := make(chan int, 42) // or buffered channel
//
// However, all these channels have a finite capacity for caching, and
// it is impossible to create a channel with unlimited capacity, namely,
// an unbounded channel.
//
// This package provides the ability to create all possible types of
// channels. To create an unbuffered or a buffered channel:
//
// ch := chann.New[int](chann.Cap(0)) // unbuffered channel
// ch := chann.New[int](chann.Cap(42)) // or buffered channel
//
// More importantly, when the capacity of the channel is unspecified,
// or provided as negative values, the created channel is an unbounded
// channel:
//
// ch := chann.New[int]() // unbounded channel
// ch := chann.New[int](chann.Cap(-42)) // or unbounded channel
//
// Furthermore, all channels provides methods to send (In()),
// receive (Out()), and close (Close()).
//
// Note that to close a channel, must use Close() method instead of the

10

https://golang.design/s/chann


The golang.design Research Design Concerns and Real-world Use Cases

// language built-in method
// Two additional methods: ApproxLen and Cap returns the current status
// of the channel: an approximation of the current length of the channel,
// as well as the current capacity of the channel.
//
// See https://golang.design/research/ultimate-channel to understand
// the motivation of providing this package and the possible use cases
// with this package.
package chann // import "golang.design/x/chann"

// Opt represents an option to configure the created channel.
// The current possible option is Cap.
type Opt func(*config)

// Cap is the option to configure the capacity of a creating buffer.
// if the provided number is 0, Cap configures the creating buffer to a
// unbuffered channel; if the provided number is a positive integer, then
// Cap configures the creating buffer to a buffered channel with the given
// number of capacity for caching. If n is a negative integer, then it
// configures the creating channel to become an unbounded channel.
func Cap(n int) Opt { ... }

// Chann is a generic channel abstraction that can be either buffered,
// unbuffered, or unbounded. To create a new channel, use New to allocate
// one, and use Cap to configure the capacity of the channel.
type Chann[T any] struct { ... }

// New returns a Chann that may represent a buffered, an unbuffered or
// an unbounded channel. To configure the type of the channel, one may
// pass Cap as the argument of this function.
//
// By default, or without specification, the function returns an unbounded
// channel which has unlimited capacity.
//
// ch := chann.New[float64]()
// // or
// ch := chann.New[float64](chann.Cap(-1))
//
// If the chann.Cap specified a non-negative integer, the returned channel
// is either unbuffered (0) or buffered (positive).
//
// Note that although the input arguments are specified as variadic parameter
// list, however, the function panics if there is more than one option is
// provided.
func New[T any](opts ...Opt) *Chann[T] { ... }

11



The golang.design Research Design Concerns and Real-world Use Cases

// In returns the send channel of the given Chann, which can be used to
// send values to the channel. If one closes the channel using close(),
// it will result in a runtime panic. Instead, use Close() method.
func (ch *Chann[T]) In() chan<- T { ... }

// Out returns the receive channel of the given Chann, which can be used
// to receive values from the channel.
func (ch *Chann[T]) Out() <-chan T { ... }

// Close closes the channel gracefully.
func (ch *Chann[T]) Close() { ... }

// ApproxLen returns an approximation of the length of the channel.
//
// Note that in a concurrent scenario, the returned length of a channel
// may never be accurate. Hence the function is named with an Approx prefix.
func (ch *Chann[T]) ApproxLen() int

// Cap returns the capacity of the channel.
func (ch *Chann[T]) Cap() int

One may use these APIs to fit the previous discussed example:

func main() {
- draw := make(chan interface{})
+ draw := chann.New[*image.RGBA]()

...

// Rendering Thread
go func() {

...
for {

select {
case size := <-change:

...
default:

- draw <- p.Draw()
+ draw.In() <- p.Draw()

}
}

}()

// Event Thread
event := time.NewTicker(100 * time.Millisecond)
for {

12



The golang.design Research Conclusion

select {
- case id := <-draw:
+ case id := <-draw.Out():

println(id)
case <-event.C:

...
}

}
}

Lastly, we also made a few contribution to the [fyne-io/fyne] GUI project to
improve their draw call batching mechanism, where it previously can only render
a fixed number of draw calls can be executed at a frame (more draw calls are
ignored), which fixes one of their long-existing code. See fyne-io/fyne#2406[5],
and fyne-io/fyne#2473[6] for more details. Here are two videos to demonstrate
the problem intuitively:

Before the fix After the fix
{{< rawhtml >}} Your browser does

not support the video tag.{{<
/rawhtml >}}

{{< rawhtml >}} Your browser
does not support the video tag.{{<

/rawhtml >}}

Before the fix, the tiny blocks are only partially rendered; whereas all blocks
can be rendered after the fix.

Conclusion
In this article, we talked about a generic implementation of a channel with
arbitrary capacity through a real-world deadlock example. A public package
chann[7] is provided as a generic channel package.

import "golang.design/x/chann"

We may still ask: Is the implementation perfect? Why there is no len() but
only a ApproxLen()? Well, the answer is non-trivial. The len() is not a thread-
safe operation for arrays, slices, and maps, but it becomes pretty clear that it
has to be thread safe for channels, otherwise, there is no way to fetch channel
length atomically. Nonetheless, does it really make sense to get the length
of a channel? As we know that channel is typically used for synchronization
purposes. If there is a len(ch) that happens concurrently with a send/receive
operation, there is no guarantee what is the return of the len(). The length
is outdated immediately as len() returns. This scenario is neither discussed in
the language specification[3], or the Go’s memory model[4]. After all, Do we
really need a len() operation for the ultimate channel abstraction? The answer
speaks for itself.

13



The golang.design Research REFERENCES

References
[1] Ian Lance Taylor. Type Parameters. March 19, 2021. https://golang.org/d

esign/43651-type-parameters

[2] rgooch. proposal: spec: add support for unlimited capacity channels. 13
May 2017. https://golang.org/issue/20352

[3] The Go Authors. The Go Programming Language Specification. Feb 10,
2021. https://golang.org/ref/spec

[4] The Go Authors. The Go Memory Model. May 31, 2014. https://golang.o
rg/ref/mem

[5] Changkun Ou. internal/dirver: use unbounded channel for event processing
Issue 2406. Aug 27, 2021. https://github.com/fyne-io/fyne/pull/2406

[6] Changkun Ou. internal/driver: fix rendering freeze in mobile Issue 2473.
Sep 15, 2021. https://github.com/fyne-io/fyne/pull/2473

[7] Changkun Ou. Package chann. Sep 10, 2021. https://golang.design/s/ch
ann

14

https://golang.org/design/43651-type-parameters
https://golang.org/design/43651-type-parameters
https://golang.org/issue/20352
https://golang.org/ref/spec
https://golang.org/ref/mem
https://golang.org/ref/mem
https://github.com/fyne-io/fyne/pull/2406
https://github.com/fyne-io/fyne/pull/2473
https://golang.design/s/chann
https://golang.design/s/chann

	The problem
	Solution 1: Send in select’s case
	Solution 2: Unbounded Channel
	A Generic Channel Abstraction
	Design Concerns and Real-world Use Cases
	Conclusion

